Организация бизнес-планирования на предприятии.
Заказать уникальную курсовую работу- 27 27 страниц
- 20 + 20 источников
- Добавлена 20.10.2012
- Содержание
- Часть работы
- Список литературы
- Вопросы/Ответы
Введение
1. Теоретические основы бизнес-планирования
1.1 Сущность и роль бизнес-планирования
1.2 Методы бизнес-планирования
2. Реализация бизнес-планирования на предприятии
2.1 Информационное обеспечение бизнес-планирования
2.2 Оценка показателей эффективности инвестиционных проектов
Заключение
Список использованной литературы
Г., Ситарчук Е.А.) Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.)
Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.) Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.) Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.) Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.)
1.Алексеева М. М. Планирование деятельности фирмы. Учебно-методическое пособие. - М.: Финансы и статистика, 2010. – 265 с.
2.Бабич Т. Н. Планирование на предприятии: Учебное пособие. - М.: КНОРУС, 2008. – 198 с.
3.Байкалова А. И. Бизнес-планирование: Учебное пособие. - Томск: ТГУ, 2008. - 53 с.
4.Баринов В. А. Бизнес-планирование. – М.: ИНФРА-М, 2008. – 256 с.
5.Бланк И. А. Финансовый менеджмент: Учебный курс. – 2-е изд., перераб. и доп. – К.: Ника-Центр, 2008. – 656 с.
6.Бухалков М. И. Планирование на предприятии учебник. - М.: ИНФРА-М, 2009. – 369 с.
7.Волков О. И., Скляренко В. К. Экономика предприятия: Курс лекций. – М.: ИНФРА-М, 2009. – 280 с.
8.Гаврилова А. Н. Финансовый менеджмент: учебное пособие. – М.: КНОРУС, 2009. – 432 с.
9.Головань С. И., Спиридонов М. А. Бизнес-планирование и инвестирование. - Ростов н/Д.: Феникс, 2008. – 198 с.
10.Ковалев В. В. Финансовый менеджмент: теория и практика. – М.: Проспект, 2009. - 116 с.
11.Колчина Н. В. Финансовый менеджмент: учебное пособие для студентов вузов, обучающихся по специальностям экономики и управления. – М.: ЮНИТИ-ДАНА, 2008. – 464 с.
12.Лапуста М. Г., Мазурина Т. Ю., Скамай Л. Г. Финансы организаций (предприятий): Учебник. – М.: ИНФРА-М, 2010. – 575 с.
13.Макарова Л. Г. Экономический анализ в управлении финансами фирмы: учебное пособие. – М.: Издательский центр «Академия», 2008. – 336 с.
14.Пласкова Н. С. Экономический анализ: учебник. – 2-е изд., перераб. и доп. – М.: Эксмо, 2009. – 704 с.
15.Поляков О. В. Бизнес-планирование. Учебное пособие. – М.: Московский международный институт эконометрики, информатики, финансов и права, 2011. – 155 с.
16.Поморина М. А. Планирование как основа управления деятельностью банка. – М.: Финансы и статистика, 2010. – 305 с.
17.Савицкая Г. В. Анализ хозяйственной деятельности предприятия: Учебник. – 5-е изд., испр. и доп. – М.: ИНФРА-М, 2009. – 345 с.
18.Сироткин В. Б. Финансовый менеджмент компаний: Учебное пособие. - СПб.: ГУАП, 2010. - 226 с.
19.Старкова Н. А. Финансовый менеджмент: Учебное пособие. - Рыбинск: РГАТА, 2007. - 174 с.
20.Халтаева С. Р., Яковлева И. А. Бизнес-планирование. Учебное пособие. - Улан-Удэ: Изд-во ВСГТУ, 2009. - 170 с.
Вопрос-ответ:
Какую роль играет бизнес-планирование на предприятии?
Бизнес-планирование играет основную роль в определении стратегии и планировании деятельности предприятия. Оно позволяет определить цели и пути их достижения, а также предусмотреть риски и принять меры по их управлению.
Какие методы используются в бизнес-планировании?
В бизнес-планировании используются различные методы, включая SWOT-анализ, анализ PESTEL, анализ конкурентов, анализ рынка и многие другие. Эти методы позволяют провести комплексный анализ ситуации и принять обоснованные решения.
Какое информационное обеспечение требуется для бизнес-планирования?
Для бизнес-планирования необходимо обеспечить доступ к информации о финансовом состоянии предприятия, рыночной ситуации, конкурентной среде и других факторах, влияющих на его деятельность. Эта информация позволяет провести анализ и оценку ситуации и разработать эффективные стратегии.
Зачем оценивать показатели эффективности инвестиционных проектов?
Оценка показателей эффективности инвестиционных проектов позволяет определить, насколько рентабельными будут инвестиции и какой уровень доходности можно ожидать. Это позволяет принять решение о целесообразности инвестиций и выбрать наиболее выгодные проекты.
Какие когнитивные технологии используются в здравоохранении?
Когнитивные технологии используются в здравоохранении на разных уровнях управления и оказания медицинской помощи. Они позволяют автоматизировать процессы анализа данных, поддержки принятия решений, диагностики и лечения пациентов. Примерами таких технологий являются системы искусственного интеллекта, машинное обучение, анализ больших данных и другие.
Какая роль играет бизнес-планирование на предприятии?
Бизнес-планирование играет важную роль на предприятии, так как позволяет определить цели и задачи организации на определенный период времени, разработать стратегии и тактики их достижения, а также предусмотреть ресурсы, необходимые для успешной реализации данных планов.
Какие методы используются при бизнес-планировании?
При бизнес-планировании применяются различные методы, включающие SWOT-анализ, анализ рынка и конкурентов, прогнозирование показателей финансовой и экономической деятельности, а также разработку стратегического и операционного планов.
Какое информационное обеспечение необходимо для бизнес-планирования на предприятии?
Для бизнес-планирования на предприятии необходимо информационное обеспечение, включающее данные о рынке, потребителях, конкурентах, финансовых показателях, производственных мощностях и другие сведения, которые позволят оценить текущее состояние предприятия и разработать эффективные стратегии развития.
Как оцениваются показатели эффективности инвестиционных проектов?
Показатели эффективности инвестиционных проектов оцениваются с помощью различных критериев, таких как внутренняя норма доходности (ВНД), срок окупаемости инвестиций, дисконтированный срок окупаемости, индекс доходности и другие. Эти показатели позволяют определить степень выгодности инвестиций и принять решение о их реализации.
Какова сущность бизнес-планирования?
Сущность бизнес-планирования заключается в разработке стратегических и операционных планов для достижения поставленных целей и задач. Оно включает анализ внешней и внутренней среды, формулировку стратегии развития, определение ресурсов и показателей эффективности. Бизнес-планирование позволяет организации оптимально использовать свои ресурсы и достичь конкурентных преимуществ на рынке.
Какую роль играет бизнес-планирование на предприятии?
Бизнес-планирование играет ключевую роль на предприятии, так как позволяет определить стратегические цели и задачи, разработать план действий и оценить риски. Оно помогает предприятию прогнозировать будущие результаты, принимать обоснованные решения и эффективно использовать ресурсы.
Какие методы используются в бизнес-планировании?
В бизнес-планировании используются различные методы, такие как SWOT-анализ, анализ рынка и конкурентов, финансовый анализ, анализ рисков и прогнозирование. Эти методы помогают выявить сильные и слабые стороны предприятия, определить конкурентное преимущество, оценить финансовое состояние и разработать стратегию развития.