Развитие пространственного мышления у младших школьников через изучение геометрического материала на уроках математики.

Заказать уникальную дипломную работу
Тип работы: Дипломная работа
Предмет: Методика преподавания технических дисциплин
  • 47 47 страниц
  • 22 + 22 источника
  • Добавлена 11.07.2023
4 785 руб.
  • Содержание
  • Часть работы
  • Список литературы
  • Вопросы/Ответы
ВВЕДЕНИЕ 3
ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАЗВИТИЯ ПРОСТРАНСТВЕННОГО МЫШЛЕНИЯ У МЛАДШИХ ШКОЛЬНИКОВ ЧЕРЕЗ ИЗУЧЕНИЕ ГЕОМЕТРИЧЕСКОГО МАТЕРИАЛ НА УРОКАХ МАТЕМАТИКИ 7
1.1. Особенности пространственного мышления младших школьников 7
1.2. Место изучения геометрического материала в начальном курсе математики 13
1.3. Роль изучения геометрического материала на уроках математики в развитии пространственного мышления младших школьников 16
Выводы по 1 главе 19
ГЛАВА 2. ОПЫТНО-ПОИСКОВАЯ РАБОТА ПО ИСПОЛЬЗОВАНИЮ ГЕОМЕТРИЧЕСКОГО МАТЕРИАЛА ДЛЯ ИЗУЧЕНИЯ ПРОСТРАНСТВЕННОГО МЫШЛЕНИЯ У МЛАДШИХ ШКОЛЬНИКОВ НА УРОКАХ МАТЕМАТИКИ 20
2.1. Оценка уровня развития пространственного мышления у младших школьников на констатирующем этапе эксперимента 20
2.2. Развитие пространственного мышления обучающихся младшего школьного возраста средствами геометрических материалов на уроках математики 28
2.3. Результаты опытно-поисковой работы по развитию пространственного мышления на контрольном этапе эксперимента 31
Выводы по 2 главе 35
ЗАКЛЮЧЕНИЕ 37
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 40
Фрагмент для ознакомления

Рисунок 4 – Распределение детей по результату теста Графический диктант Д.Б Эльконина, %Распределение детей по результату теста Тест «Копирование фигуры» представлено на рисунке 5. Как следует из рисунка, очень низкий результат бы у 10,0% детей (2 человека), низкий – у 20,0% детей (4 человека), средний – у 25,0% детей (5 человек), высокий – у 35,0% детей (7 человек), очень высокий – у 10,0% детей (2 человека).Распределение детей по результату теста Лабиринт Л.А. Венгера можно видеть на рисунке 6. Как следует из рисунка, очень низкий результат зафиксирован не был, низкий был у 75,00% детей (15 человек), средний – у 25,0% детей (5 человек), высокий и очень высокий результат зафиксированы не были.Рисунок 5 – Распределение детей по результату теста Тест «Копирование фигуры», %Рисунок 6 – Распределение детей по результату теста Лабиринт Л.А. Венгера, %Таким образом уровень сформированности пространственного мышления испытуемых можно оценить как средний и низкий. Это требует использования комплекса специальных упражнений.2.2. Развитие пространственного мышления обучающихся младшего школьного возраста средствами геометрических материалов на уроках математикиМы предлагаем следующие задания для формирования пространственного мышления у детей младшего школьного возраста средствами геометрического материала:Засели в правый верхний квадрат красный прямоугольник, слева от него – желтый квадрат, слева от него – синий круг, ниже него – синий треугольник, справа от него – желтый прямоугольник, снизу от него – желтый квадрат. Дорисуй фигуру так, чтобы она была симметрична.Начерти фигуру по стрелкам.Проведи мышку к лабиринту.Раздели фигуры на одинаковые части.Найди пары среди кубиков и их осколков.Брусок собран из трех деталей. Каждая деталь состоит из четырех кубов, имеет свой цвет. Как выглядит белая деталь? Если цилиндр разрезать, то какую фигуру мы получим?Мысленно совмести верхние две фигуры. Какая фигура получится?Мысленно поверни верхний квадрат на 90° вправо. Какая фигура получиться в итоге?Собери ленту из кусков.Как эта фигура будет выглядеть, если посмотреть на нее сверху?У кубика сверху внизу у него будет фиолетовая грань, сзади –зеленая, а слева – белая. Мысленно прокати кубик по указанной траектории. Какая грань отпечатается в выделенной клетке?Какой рисунок на валике?2.3. Результаты опытно-поисковой работы по развитию пространственного мышления на контрольном этапе экспериментаРезультаты оценки уровня развития пространственного мышления у обучающихся на контрольном этапе эксперимента можно видеть в таблице 3.Таблица 3Результаты оценки уровня развития пространственного мышления у обучающихся на контрольном этапе эксперимента№Пол ВозрастГрафический диктант Копирование фигурыЛабиринт Л.А. Венгера12345678910Сумма1М8344334332344332Ж9343344442435363Ж9234344333434354М9224333334246355М9334333344233326Ж8423434434263367М9333332232223258М9424332232222259М93343343433563810Ж94434343344643811Ж83343344333653812М94443334324653713М93334344422363514Ж94433444443453815Ж93344344443353816М94433444333543617М93334444332443518М94433334433443419Ж93333434323533320Ж932334444443639Распределение детей по результату теста Графический диктант Д.Б Эльконина можно видеть на рисунке 7. Как следует из рисунка, очень низкий, низкий результат не был зафиксирован, средний результат был у 10,0% детей (2 человека), высокий – у 55,0% детей (11 человек), очень высокий – у 35,0% детей (7 человек).Рисунок 7– Распределение детей по результату теста Графический диктант Д.Б Эльконина, %Распределение детей по результату теста Тест «Копирование фигуры» представлено на рисунке 8. Как следует из рисунка, очень низкий и низкий результат зафиксирован не был, средний результат бы у 20,0% детей (4 человека), высокий – у 45,0% детей (9 человек), очень высокий – у 35,0% детей (7 человек).Распределение детей по результату теста Лабиринт Л.А. Венгера можно видеть на рисунке 9. Как следует из рисунка, очень низкий и низкий результат зафиксирован не был, средний результат был у 10,0% детей (2 человека), высокий – у 85,0% детей (17 человек), очень высокий результат – у 5,0% детей (1 человек). Рисунок 8 – Распределение детей по результату теста Тест «Копирование фигуры», %Рисунок 9 – Распределение детей по результату теста Лабиринт Л.А. Венгера, %Таким образом уровень сформированности пространственного мышления испытуемых вырос и стал высоким и очень высоким. Это говорит об эффективности разработанного комплекса заданийВыводы по 2 главеИсходя из полученных сведений можно сделать следующие выводы:Всего в исследовании приняли участие 20 человек в возрасте 8-9 лет. Для тестирования уровня развития пространственного мышления мы использовали такие методики как графический диктант Д.Б. Эльконина, тест «Копирование фигуры», лабиринт Л.А. Венгера.Результаты на констатирующем этапе эксперимента были преимущественно низкими и средними. Так, низкий показатель продемонстрировали 40,0% детей по тесту «Графический диктант Д.Б. Эльконина», 20,0% детей по тесту «Копирование фигуры», 75,0% детей по тесту «Лабиринт Л.А. Венгера», средний результат – 25,0% детей по тесту «Графический диктант Д.Б. Эльконина», 25,0% детей по тесту «Копирование фигуры», 25,0% детей по тесту «Лабиринт Л.А. Венгера»,Был разработан комплекс упражнений по формированию пространственного мышления у детей младшего школьного возраста.Результаты оценки уровня развития пространственного мышления на контрольном этапе эксперимента показали, что комплекс упражнений был эффективным. Как правило, дети получили высокие и очень высокие результаты. Так, высокий показатель продемонстрировали 55,0% детей по тесту «Графический диктант Д.Б. Эльконина», 45,0% детей по тесту «Копирование фигуры», 85,0% детей по тесту «Лабиринт Л.А. Венгера», очень высокий показатель – 35,0% детей по тесту «Графический диктант Д.Б. Эльконина», 35,0% детей по тесту «Копирование фигуры», 5,0% детей по тесту «Лабиринт Л.А. Венгера».Результаты позволяют говорить об эффективности разработанного комплекса заданий.ЗАКЛЮЧЕНИЕПространственное мышление – это способность человека понимать и манипулировать пространством вокруг себя. Это важный аспект нашей жизни, который является ключевым элементом в процессе решения задач, связанных с наукой, техникой и инженерией. Одним из примеров пространственного мышления является умение ориентироваться в пространстве. Это включает в себя умение оценивать расстояния, ориентироваться по компасу и умение определять направления. Пространственное мышление также позволяет человеку видеть целое изображение, а не только его фрагменты. Это важно для проектирования и конструирования различных объектов, таких как здания, мосты и автомобили. Пространственное мышление – это навык, который можно развить. Для этого необходимо тренировать когнитивные функции. Примером средств, которые позволяют активно формировать пространственное мышление можно считать логические игры, головоломки, различные конструкции из разнообразных материалов, схемы. Пространственное мышление – это важный аспект нашей жизни, который может быть развит и улучшен при помощи тренировок. Это позволит лучше ориентироваться в пространстве, а также развить логическое мышление и увеличить наши возможности в области науки и техники.Иными словами, пространственное мышление – это многогранная конструкция, включающая навыки и стратегии, связанные с представлением объектов под разными углами, визуальным поиском сцены или представлением преобразований двумерных и трехмерных объектов. Успехи учащихся в решении пространственных задач (т.е. их пространственные навыки) важны для обучения, дальнейшей профессиональной деятельности. Пространственные навыки являются гибкими и развиваются благодаря целенаправленной практике, школьному обучению и активному опыту. У обучающихся младшего школьного возраста пространственное мышление развито недостаточно. В целом пространственное мышление зависит от общего уровня психического развития ребенка, уровня его взаимодействия с окружающим миром, богатства сенсорных эталонов, образов, которые сформированы у ребенка на момент его поступления в школу. При этом часто произвольное оперирование этими образами развито недостаточно. Одним из предметов, который позволяет развивать пространственное мышление, выступает геометрия. Геометрия может использоваться не только в основной и старшей школе, но и в начальных классах в форме первоначальных представлений о геометрических фигурах, их свойствах, манипуляций с геометрическими фигурами.Полученные сведения позволяют нам заключить следующее:Пространственное мышление – это способность человека к мысленной манипуляции дух- и трехмерными фигурами. Пространственное мышление формируется постепенно, младший школьный возраст является наиболее благоприятным с точки зрения формирования пространственного мышления.Геометрический материал широко используется в современном курсе математики в начальной школе. Дети в начальной школе знакомятся с фигурами, величинами, рядом пространственных понятий, учатся строить простые фигуры на плоскости. Геометрический материал позволяет сформировать у обучающихся основные геометрические понятия, в частности такие знания о пространстве как форма (круг, прямоугольник, квадрат, треугольник и т.д.), величина (больше, меньше, равны), протяженность (длиннее, короче, шире, уже и др.), положение в пространстве (сбоку, сверху, справа, слева и др.), формирует геометрические образы, умение манипулировать этими образами сначала в наглядном, а потом и в мысленном плане. Оценка уровня развития пространственного мышления у обучающихся 3 класса на констатирующем этапе эксперимента показала, что он преимущественно низкий и средний.Был предложен комплекс заданий на развитие пространственного мышления.Разработанный комплекс показал свою эффективность, уровень развития пространственного мышления у детей после окончания эксперимента вырос до высокого и очень высокого.СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВЗаконодательные и нормативные актыПриказ Министерства образования и науки Российской Федерации от 06.10.2009 года №373 «Об утверждении и введении в действие Федерального государственного стандарта начального общего образования» [Электронный ресурс]. – Режим доступа: https://fgos.ru/fgos/fgos-noo/ (дата обращения: 26.04.2023).Специальная и учебная литератураАбрамова Г.С. Психология развития и возрастная психология: учебник для вузов и ссузов / Г.С. Абрамова. – 2-е изд., испр. и доп. – М.: Прометей, 2018. – 705 с.БорзыкС.В. Идея мышления: монография [текст] / С.В. Борзых. – М.: ИНФРА-М, 2019. – 118 с.Дорофеев Г.В. Математика. Рабочие программы. Предметная линия учебников системы «Перспектива». 1-4 классы [текст]: пособие для учителей общеобразовательных организаций / Г.В. Дорофеев, Т.Н. Миракова. – М.: Просвещение, 2014. – 137 с.Марютина, Т. М. Психофизиология: общая, возрастная, дифференциальная, клиническая: учебник для студентов высших учебных заведений [текст] / Т. М. Марютина. – Москва: Инфра-М, 2015. – 434 с.Математика. Примерные рабочие программы. Предметная линия учебников системы «Школа России». 1-4 классы [текст]: учебное пособие для общеобразовательных организаций / М.И. Миро и др. – 5-е изд., перераб. и доп. – М.: Просвещение, 2021. – 144 с.Обухова, Л. Ф. Возрастная психология: учебник для вузов [текст] / Л. Ф. Обухова. – Москва: Юрайт, 2022. – 460 с.Примерная рабочая программа начального общего образования «Математика» (для 1-4 классов образовательных организаций) [Электронный ресурс]. – Режим доступа: https://edsoo.ru/Primernaya_rabochaya_programma_nachalnogo_obschego_obrazovaniya_predmeta_Matematika_proekt_.htm (дата обращения: 26.04.2023).УрунтаеваГ.А. Психология познания дошкольника в профессиоанльно-педагогической деятельности воспитателя: монография [текст] / Г.А. Урунтаева, Е.Н. Гошева. – М.: ИНФРА-М, 2020. – 213 с.УсковВ.А. Мышление и деятельность: монография [текст] / В.А. Усков. – М.: Ru.ACIence, 2020. – 179 с. Хилько, М. Е. Возрастная психология: учебное пособие для вузов [текст] / М. Е. Хилько, М. С. Ткачева. – 2-е изд., перераб. и доп. – Москва : Издательство Юрайт, 2022. – 201 с.Шаповаленко И.В. Психология развития и возрастная психологи [текст] / И.В. Шаповаленко. – 2-е изд., перераб. и доп – М.: Юрайт, 2012. – 567 с.Периодическая литератураБондаренко Е.Г. Наглядная геометрия на уроках математики в начальной школе [текст] / Е.Г. Бондаренко, Н.Г. Кузина // Актуальные вопросы методики обучения математике и информатике. Материалы Всероссийской научно-практической конференции преподавателей математики, информатики школы и вузов, 2015. – С. 49-52.Василенко А.В. Психолого-педагогические условия развития пространственного мышления учащихся [текст] / А.В. Василенко // Наука и школа, 2013. – № 4. – С. 69-72.ВоротынцеваС.А. Методические аспекты развивающего обучения элементам геометрии в начальной школе [текст] / С.А. Воротынцева // Перспективы развития науки и образования. Сборник научных трудов по материалам Международной научно-практической конференции, 2012. – С. 28-30.ГавришА.И. Развитие математических способностей у дошкольников и младших школьников через изучение геометрического материала / А.И. Гавриш // Проблемы современного педагогического образования, 2018. – № 58-2. – С. 72-75.Зубарева Е.С. Элементы топологии в развитии пространственного мышления младших школьников [текст] / Е.С. Зубарева // Проблемы современного педагогического образования, 2019. – № 64-4. – С 72-76.Коник О.Ю. Формирование пространственного мышления на уроках наглядной геометрии [текст] / О.Ю. Коник, А.О. Корнеева // Проблемы и перспективы развития образования в России, 2013. – № 21. – С. 31-35.Кузнецов А.П. Пространственное мышление как умственная деятельность [текст] / А.П. Кузнецов // Обучение и воспитание: методика и практика, 2014. – № 11. – С. 13-16.ЛугинаЯ.А. Развитие пространственного мышления у студентов-дизайнеров [текст] / Я.А. Лугина, О.М. Кошелева // Омский научный вестник, 2012. – № 2 (106). – С. 236-239.Николаева Ю.С. Развитие пространственного мышления обучающихся [текст] / Ю.С. Николаева, М.И. Баран // Актуальные проблемы авиации и космонавтики, 2018. – Т. 3. – № 14. – С. 791-793.ТукееваГ.Е. О формировании пространственно-образного мышления [текст] / Г.Е. Тукеева // Вопросы науки и образования, 2019. – № 5 (50). – С. 175-186.Приложение 1. Стимульный материал к тесту «Копирование фигуры»Приложение 2. Стимульный материал к тесту «Лабиринты Л.А. Венгера»Задание 1, 2Задание 3, 4Задание 5, 6Задание 7, 8Задание 9Задание 10

Законодательные и нормативные акты
1. Приказ Министерства образования и науки Российской Федерации от 06.10.2009 года №373 «Об утверждении и введении в действие Федерального государственного стандарта начального общего образования» [Электронный ресурс]. – Режим доступа: https://fgos.ru/fgos/fgos-noo/ (дата обращения: 26.04.2023).
Специальная и учебная литература
2. Абрамова Г.С. Психология развития и возрастная психология: учебник для вузов и ссузов / Г.С. Абрамова. – 2-е изд., испр. и доп. – М.: Прометей, 2018. – 705 с.
3. Борзык С.В. Идея мышления: монография [текст] / С.В. Борзых. – М.: ИНФРА-М, 2019. – 118 с.
4. Дорофеев Г.В. Математика. Рабочие программы. Предметная линия учебников системы «Перспектива». 1-4 классы [текст]: пособие для учителей общеобразовательных организаций / Г.В. Дорофеев, Т.Н. Миракова. – М.: Просвещение, 2014. – 137 с.
5. Марютина, Т. М. Психофизиология: общая, возрастная, дифференциальная, клиническая: учебник для студентов высших учебных заведений [текст] / Т. М. Марютина. – Москва: Инфра-М, 2015. – 434 с.
6. Математика. Примерные рабочие программы. Предметная линия учебников системы «Школа России». 1-4 классы [текст]: учебное пособие для общеобразовательных организаций / М.И. Миро и др. – 5-е изд., перераб. и доп. – М.: Просвещение, 2021. – 144 с.
7. Обухова, Л. Ф. Возрастная психология: учебник для вузов [текст] / Л. Ф. Обухова. – Москва: Юрайт, 2022. – 460 с.
8. Примерная рабочая программа начального общего образования «Математика» (для 1-4 классов образовательных организаций) [Электронный ресурс]. – Режим доступа: https://edsoo.ru/Primernaya_rabochaya_programma_nachalnogo_obschego_obrazovaniya_predmeta_Matematika_proekt_.htm (дата обращения: 26.04.2023).
9. Урунтаева Г.А. Психология познания дошкольника в профессиоанльно-педагогической деятельности воспитателя: монография [текст] / Г.А. Урунтаева, Е.Н. Гошева. – М.: ИНФРА-М, 2020. – 213 с.
10. Усков В.А. Мышление и деятельность: монография [текст] / В.А. Усков. – М.: Ru.ACIence, 2020. – 179 с.
11. Хилько, М. Е. Возрастная психология: учебное пособие для вузов [текст] / М. Е. Хилько, М. С. Ткачева. – 2-е изд., перераб. и доп. – Москва : Издательство Юрайт, 2022. – 201 с.
12. Шаповаленко И.В. Психология развития и возрастная психологи [текст] / И.В. Шаповаленко. – 2-е изд., перераб. и доп – М.: Юрайт, 2012. – 567 с.
Периодическая литература
13. Бондаренко Е.Г. Наглядная геометрия на уроках математики в начальной школе [текст] / Е.Г. Бондаренко, Н.Г. Кузина // Актуальные вопросы методики обучения математике и информатике. Материалы Всероссийской научно-практической конференции преподавателей математики, информатики школы и вузов, 2015. – С. 49-52.
14. Василенко А.В. Психолого-педагогические условия развития пространственного мышления учащихся [текст] / А.В. Василенко // Наука и школа, 2013. – № 4. – С. 69-72.
15. Воротынцева С.А. Методические аспекты развивающего обучения элементам геометрии в начальной школе [текст] / С.А. Воротынцева // Перспективы развития науки и образования. Сборник научных трудов по материалам Международной научно-практической конференции, 2012. – С. 28-30.
16. Гавриш А.И. Развитие математических способностей у дошкольников и младших школьников через изучение геометрического материала / А.И. Гавриш // Проблемы современного педагогического образования, 2018. – № 58-2. – С. 72-75.
17. Зубарева Е.С. Элементы топологии в развитии пространственного мышления младших школьников [текст] / Е.С. Зубарева // Проблемы современного педагогического образования, 2019. – № 64-4. – С 72-76.
18. Коник О.Ю. Формирование пространственного мышления на уроках наглядной геометрии [текст] / О.Ю. Коник, А.О. Корнеева // Проблемы и перспективы развития образования в России, 2013. – № 21. – С. 31-35.
19. Кузнецов А.П. Пространственное мышление как умственная деятельность [текст] / А.П. Кузнецов // Обучение и воспитание: методика и практика, 2014. – № 11. – С. 13-16.
20. Лугина Я.А. Развитие пространственного мышления у студентов-дизайнеров [текст] / Я.А. Лугина, О.М. Кошелева // Омский научный вестник, 2012. – № 2 (106). – С. 236-239.
21. Николаева Ю.С. Развитие пространственного мышления обучающихся [текст] / Ю.С. Николаева, М.И. Баран // Актуальные проблемы авиации и космонавтики, 2018. – Т. 3. – № 14. – С. 791-793.
22. Тукеева Г.Е. О формировании пространственно-образного мышления [текст] / Г.Е. Тукеева // Вопросы науки и образования, 2019. – № 5 (50). – С. 175-186.

Вопрос-ответ:

Как можно развивать пространственное мышление у младших школьников на уроках математики?

Развитие пространственного мышления у младших школьников на уроках математики можно осуществлять через изучение геометрического материала. Это может включать в себя задания на конструирование и моделирование, использование геометрических фигур и ориентирование в пространстве.

Какие особенности пространственного мышления младших школьников?

У младших школьников пространственное мышление только начинает формироваться. Они уже могут сравнивать и классифицировать предметы по форме, размеру и цвету, но им еще трудно ориентироваться в пространстве и решать сложные задачи связанные с геометрией.

Какое место занимает изучение геометрического материала в начальном курсе математики?

Изучение геометрического материала занимает важное место в начальном курсе математики. Оно помогает развивать пространственное мышление у младших школьников и стимулирует их познавательные способности.

Какая роль изучения геометрического материала на уроках математики в развитии пространственного мышления у младших школьников?

Изучение геометрического материала на уроках математики играет важную роль в развитии пространственного мышления младших школьников. Оно помогает им учиться видеть и анализировать геометрические формы, ориентироваться в пространстве, решать задачи на конструирование и моделирование.

Какие методы могут использоваться при изучении геометрического материала на уроках математики?

При изучении геометрического материала на уроках математики можно использовать различные методы, такие как игровые задания с геометрическими фигурами, конструирование из геометрических элементов, решение задач на построение и ориентирование в пространстве. Также можно использовать компьютерные программы и интерактивные учебники для обучения геометрии.

Какие особенности пространственного мышления младших школьников?

У младших школьников наблюдается недостаточная развитость пространственного мышления. Им часто трудно представлять и визуализировать трехмерные объекты, они не всегда способны адекватно ориентироваться на плоскости и в пространстве. Также часто возникают трудности в понимании и использовании геометрических терминов и отношений.

Какое место занимает изучение геометрического материала в начальном курсе математики?

Изучение геометрического материала занимает важное место в начальном курсе математики. Это одна из основных тем, которая помогает развивать пространственное мышление у младших школьников. Изучение геометрии позволяет детям учиться анализировать формы и фигуры, находить закономерности и отношения между ними, а также решать задачи, требующие представления об объектах в пространстве.

Какую роль играет изучение геометрического материала на уроках математики в развитии пространственного мышления?

Изучение геометрического материала на уроках математики играет значительную роль в развитии пространственного мышления у младших школьников. Это способствует формированию навыков анализа и сравнения геометрических фигур, пониманию и использованию геометрических терминов, а также развитию способности визуализировать трехмерные объекты и ориентироваться в пространстве. Благодаря изучению геометрии дети могут научиться логически мыслить, анализировать и решать задачи, требующие представления об объектах в пространстве