Статистический анализ рядов распределения. Проверка гипотезы о законе распределения
Заказать уникальную курсовую работу- 35 35 страниц
- 15 + 15 источников
- Добавлена 01.10.2009
- Содержание
- Часть работы
- Список литературы
- Вопросы/Ответы
1. ТАБЛИЧНОЕ И ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ВАРИАЦИОННОГО РЯДА
2. ХАРАКТЕРИСТИКА
ЦЕНТРАЛЬНОЙ ТЕНДЕНЦИИ РАСПРЕДЕЛЕНИЯ
3. ОЦЕНКА ВАРИАЦИИ ИЗУЧАЕМОГО ПРИЗНАКА
4. ХАРАКТЕРИСТИКА СТРУКТУРЫ РАСПРЕДЕЛЕНИЯ
5. ХАРАКТЕРИСТИКА ФОРМЫ РАСПРЕДЕЛЕНИЯ
6. СГЛАЖИВАНИЕ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ.
ПРОВЕРКА ГИПОТЕЗЫ О ЗАКОНЕ РАСПРЕДЕЛЕНИЯ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Расчетное значение критерия Пирсона составило . Табличное значение критерия – .
Таблица 6.1
Расчет критерия вручную
№ 19,31 49,69 34,50 -2,666 0,0114 1 1,000 49,69 80,06 64,87 -1,982 0,0559 3 0,000 80,06 110,43 95,24 -1,299 0,1716 9 1,000 110,43 140,80 125,61 -0,615 0,3302 18 0,500 140,80 171,17 155,99 0,068 0,3980 23 3,522 171,17 201,54 186,36 0,752 0,3007 16 0,563 201,54 231,91 216,73 1,436 0,1424 8 2,000 231,91 262,29 247,10 2,119 0,0422 2 4,500 Итого: 13,084
Очевидно, что расчетное значение критерия превышает критическое, следовательно гипотеза о нормальном распределении подтверждена (табл. 6.2).
Таблица 6.2
Проверка гипотезы о нормальном законе распределения вручную
Тип распределения Число степеней свободы r Расчетное значение критерия Табличное значение критерия Нормальное 7 13,084 14,07
Рассмотрим также гипотезы о логнормальном и прямоугольном распределении (рис. 6.2 и рис. 6.3).
Из рис. 6.2 видно, что критерий для логнормального распределения равен 16,48145 при количестве степеней свободы r=3 и уровне значимости 0,0009.
Рис. 6.2. Проверка гипотезыо логарифмически нормальном распределении переменной Var1
Сопоставим рассчитанные показатели с табличным значением критерия Пирсона:
Очевидно, что расчетное значение критерия Пирсона превышает критическое, а расчетная вероятность ниже табличного уровня значимости. Следовательно, гипотеза о логнормальном распределении вариационного ряда не может быть принята.
На рис. 6.3 приведена гистограмма и расчетная кривая логнормального распределения переменной Var1.
На рис. 6.4 приведена таблица расчета теоретических частот и критерия Пирсона для прямоугольного распределения.
Таким образом, расчетный критерий Пирсона для прямоугольного распределения составил 54,48687 при количестве степеней свободы 5 и вероятности 0,00:
Рис. 6.3. Гистограмма и расчетная кривая логнормального распределения для переменной Var1
Рис. 6.4. Проверка гипотезыо прямоугольном распределении переменной Var1
Очевидно, что расчетный критерий Пирсона намного превышает табличное значение, следовательно гипотеза о прямоугольном распределении переменной Var1 отклонена.
ЗАКЛЮЧЕНИЕ
В курсовой работе были проанализированы данные о распределении регионов России по количеству легковых автомобилей на 1000 человек населения за 2005 г. Для удобства анализа данные были представлены в виде группировочных таблиц с количеством интервалов n=8, 10 и 13. Наиболее пригодной для анализа оказалась группировочная таблица с восемью интервалами.
Также для удобства анализа вариационного ряда используется графическое представление. В работе были использованы такие виды графиков, как полигон, кумулята и гистограмма. Полигон, построенный на основе абсолютных частот, показывает форму распределения. Из рисунка видно, что распределение имеет одну вершину, форма его симметрична и довольно крута.
Также с помощью графика можно определить модальный интервал (140,8–171,17). Гистограмма позволяет сделать такие же выводы.
Кумулята показывает накопленные частоты распределения (абсолютные или относительные). С помощью кумуляты легко определить медианный интервал распределения (140,8–171,17) – это интервал, на котором кумулята переваливает за середину распределения, т.е. за 40 (для абсолютных частот) или 50% (для относительных частот). Так как модальный и медианный интервалы распределения совпадают, то распределение симметрично.
Центральная тенденция распределения характеризуется такими показателями, как среднее арифметическое значение, мода и медиана. Все показатели были определены с помощью программы Statistica по исходному ряду данных и вручную по сгруппированным данным. Среднее арифметическое значение вариационного ряда составило 153,055 (по исходным данным) и 152,95 (по группировочной таблице).
Медиана – это величина признака, делящая распределение на две равные части. По исходным данным медиана составила 153,45, а по сгруппированным данным – 154,09.
Мода – это значение признака с наибольшей частотой. Ее значение составило 155,14. Очевидно, что и среднее арифметическое, и медиана, и мода принадлежат одному интервалу и незначительно отличаются по значениям. Это свидетельствует о симметричности распределения относительно центра.
Вариация – это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. К показателям, характеризующим вариацию распределения, относятся размах вариации, дисперсия и среднее квадратическое отклонение и коэффициент вариации.
Размах вариации показывает амплитуду вариации и определяется как разница между максимальным и минимальным значением распределения и составляет 212,6.
Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины. Дисперсия, рассчитанная по исходным данным, составила 1730,257, а по сгруппированным – 1973,99. Более удобным для анализа показателем является среднее квадратическое отклонение, которое определяется как корень из дисперсии. Среднее квадратическое отклонение, рассчитанное на основании исходного ряда распределения, равно 41,596, а отклонение, определенное по сгруппированным данным, – 44,43. Оно показывает, что значение признака отклоняется от среднего арифметического значения в среднем на 41,596.
Коэффициент вариации определяется как отношение среднего квадратического отклонения к среднему арифметическому значению. Этот показатель используют для характеристики однородности совокупности. Значение коэффициента вариации для исследуемого ряда данных составило 27,18%. Поскольку рассчитанное значение коэффициента меньше 33%, то данная совокупность является количественно однородной.
Структура распределения характеризуется такими показателями, как медиана, квартили и децили. Медиана делит совокупность на две равные части, квартили – на четыре части, а децили – на 10 частей. Медиана распределения составляет 153,45, нижний квартиль – 135,85, верхний квартиль – 172,75. Разница между первым и вторым квартилем (медианой) составляет 17,6; между вторым и третьим – 19,3. Очевидно, что квартили расположены очень близко один к другому, что говорит о высокой плотности середины распределения.
Форма распределения характеризуется асимметрией и эксцессом. Коэффициент асимметрии показывает, как следует из названия, степень асимметричности распределения и определяется как отношение третьего центрального момента к стандартному отклонению в кубе. Коэффициент асимметрии исследуемого распределения равен -0,341 (по сгруппированным данным – -0,168), что свидетельствует о небольшой левосторонней асимметрии.
Эксцесс характеризует «крутизну» распределения и определяется как отношение четвертого центрального момента к стандартному отклонению в четвертой степени. Для нормального распределения величина эксцесса равна трем, поэтому от рассчитанного значения отнимают 3. Значение эксцесса для анализируемого распределения равно 1,075 (рассчитанное вручную по группировочной таблице – 0,824). Это означает, что исследуемое распределение гораздо «круче» нормального.
Одна из важнейших задач анализа вариационных рядов заключается в выявлении закономерности распределения и определении ее характера. Для этого осуществляется процедура выравнивания и проверка гипотезы о соответствии эмпирического ряда данных теоретическому распределению. В данной работе были проверены гипотезы соответствия эмпирического вариационного ряда нормальному, логнормальному и прямоугольному распределениям с помощью критерия Пирсона. Для этого с помощью программы Statistica было осуществлено сглаживание эмпирического ряда данных путем расчета теоретических частот и сравнение полученных значений с эмпирическими частотами. В результате этих расчетов было получено расчетное значение критерия .
Расчетный критерий для нормального распределения составил 5,42808 при количестве степеней свободы 2 и расчетном уровне значимости 0,06627. Табличное значение критерия равно 5,991. Поскольку расчетное значение меньше критического, гипотеза о нормальном распределении не противоречит статистическим данным.
Аналогично были рассчитаны критерии Пирсона для логнормального () и прямоугольного () распределения. Оба критерия значительно превышают соответствующие табличные значения, следовательно, гипотезы о логнормальном и прямоугольном распределениях не подтвердились.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Боровиков В.П., STATISTICA. Искусство анализа данных на компьютере: для профессионалов / В. П. Боровиков. – 2-е изд. – СПб. : – 2003. – 688 с.
Венецкий И.Г., Основные математико-статистические понятия и формулы в экономическом анализе. Справочник / И.Г. Венецкий, В.И. Венецкая. – 2-е изд., перераб. и доп. – М. : Статистика, 1979. – 477 с.
Гмурнан В.Э. Теория вероятностей и математическая статистика: Учеб. пособие. – М.: Высш. шк., 2003. – 479 с.
Гусаров В.М. Статистика: Учеб. пособие для вузов. – М.: ЮНИТИ-ДАНА, 2003. – 463 с.
Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. И.И. Елисеевой. – 5-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – 656 с.
Закс Л., Статистическое оценивание: Пер. с нем / Л. Закс. – М.: Статистика, 1976. – 597 с.
Н.В. Куприенко Статистика. Методы анализа распределений. Выборочное наблюдение. 3-е изд. : учеб. пособие. / Н.В. Куприенко, О.А. Пономарева, Д.В. Тихонов. – СПб.: Изд-во Политехн. ун-та, 2009. – 138 с.
Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: Учебник. / Под ред. А.А. Спирина, О.Э. Башиной. – М.: Финансы и статистика, 1996. – 296 с.
Общая теория статистики: учеб. / М.Р. Ефимова, Е.В. Петрова, В.Н. Румянцев. – М.: ИНФРА-М, 2002. – 416 с.
Орлов А.И. Прикладная статистика. Учебник. / А.И. Орлов. – М.: Издательство «Экзамен», 2004. – 656 с.
Регионы России. Социально-экономические показатели. 2006: Стат.сб. М., 2007.
Сизова Т.М. Статистика: Учебное пособие. – СПб.: СПб ГУИТМО, 2005. – 80 с.
Теория статистики.: учеб. /Под ред. Р.А. Шмойловой. – М.: Финансы и статистика, 2005. – 560 с.
Теория статистики: учеб. / Под ред. проф. Г.Л. Громыко. – 2-е изд., перераб. и доп. – М.: ИНФРА-М, 2006. – 476 с.
Экономическая статистика: Учебник. / Под ред. Ю.Н. Иванова. – М.: ИНФРА-М, 2004. – 480 с.
Гусаров В.М. Статистика: Учеб. пособие для вузов. – М.: ЮНИТИ-ДАНА, 2003. – С. 43
Гусаров В.М. Статистика: Учеб. пособие для вузов. – М.: ЮНИТИ-ДАНА, 2003. – С. 39
Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: Учебник. / Под ред. А.А. Спирина, О.Э. Башиной. – М.: Финансы и статистика, 1996. – С. 62
Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. И.И. Елисеевой. – 5-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – С. 124
Гусаров В.М. Статистика: Учеб. пособие для вузов. – М.: ЮНИТИ-ДАНА, 2003. – С. 71
Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. И.И. Елисеевой. – 5-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – С. 274
1
2.Венецкий И.Г., Основные математико-статистические понятия и формулы в экономическом анализе. Справочник / И.Г. Венецкий, В.И. Венецкая. – 2-е изд., перераб. и доп. – М. : Статистика, 1979. – 477 с.
3.Гмурнан В.Э. Теория вероятностей и математическая статистика: Учеб. пособие. – М.: Высш. шк., 2003. – 479 с.
4.Гусаров В.М. Статистика: Учеб. пособие для вузов. – М.: ЮНИТИ-ДАНА, 2003. – 463 с.
5.Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. И.И. Елисеевой. – 5-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – 656 с.
6.Закс Л., Статистическое оценивание: Пер. с нем / Л. Закс. – М.: Статистика, 1976. – 597 с.
7.Н.В. Куприенко Статистика. Методы анализа распределений. Выборочное наблюдение. 3-е изд. : учеб. пособие. / Н.В. Куприенко, О.А. Пономарева, Д.В. Тихонов. – СПб.: Изд-во Политехн. ун-та, 2009. – 138 с.
8.Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: Учебник. / Под ред. А.А. Спирина, О.Э. Башиной. – М.: Финансы и статистика, 1996. – 296 с.
9.Общая теория статистики: учеб. / М.Р. Ефимова, Е.В. Петрова, В.Н. Румянцев. – М.: ИНФРА-М, 2002. – 416 с.
10.Орлов А.И. Прикладная статистика. Учебник. / А.И. Орлов. – М.: Издательство «Экзамен», 2004. – 656 с.
11.Регионы России. Социально-экономические показатели. 2006: Стат.сб. М., 2007.
12.Сизова Т.М. Статистика: Учебное пособие. – СПб.: СПб ГУИТМО, 2005. – 80 с.
13.Теория статистики.: учеб. /Под ред. Р.А. Шмойловой. – М.: Финансы и статистика, 2005. – 560 с.
14.Теория статистики: учеб. / Под ред. проф. Г.Л. Громыко. – 2-е изд., перераб. и доп. – М.: ИНФРА-М, 2006. – 476 с.
15.Экономическая статистика: Учебник. / Под ред. Ю.Н. Иванова. – М.: ИНФРА-М, 2004. – 480 с.
Вопрос-ответ:
Как можно представить вариационный ряд?
Вариационный ряд можно представить в виде таблицы, где указываются значения признака и их частоты.
Что такое характеристика центральной тенденции распределения?
Характеристика центральной тенденции распределения – это показатель, который позволяет описать среднее значение или типичное значение признака в выборке. Например, это может быть среднее арифметическое, медиана или мода.
Как оценить вариацию изучаемого признака?
Вариацию изучаемого признака можно оценить с помощью различных показателей, таких как дисперсия, стандартное отклонение, вариационный коэффициент и др. Они позволяют определить, насколько различны значения признака в выборке.
Что такое характеристика структуры распределения и как ее определить?
Характеристика структуры распределения позволяет определить отношение между различными значениями признака. Это могут быть, например, доля или процент значений, попадающих в определенный интервал или класс. Характеристика структуры распределения можно определить с помощью гистограммы или полигона частот.
Что такое сглаживание эмпирического распределения и зачем его применяют?
Сглаживание эмпирического распределения – это метод, который позволяет сгладить колебания значений признака, чтобы увидеть общую закономерность. Применяют его для улучшения визуализации данных и оценки вероятностной плотности распределения.
Как представить вариационный ряд в виде таблицы и графика?
Вариационный ряд можно представить в виде таблицы, где каждому значению изучаемого признака будет соответствовать количество наблюдений. Также можно построить график вариационного ряда, на котором по оси абсцисс откладываются значения признака, а по оси ординат - их количество.
Какие характеристики можно использовать для описания центральной тенденции распределения?
Для описания центральной тенденции распределения можно использовать такие характеристики, как среднее арифметическое, медиана и мода. Среднее арифметическое - это сумма всех значений признака, деленная на их количество. Медиана - это значение признака, которое разделяет распределение пополам. Мода - это значение признака, которое встречается наиболее часто.
Как можно оценить вариацию изучаемого признака?
Для оценки вариации изучаемого признака можно использовать такие характеристики, как дисперсия и стандартное отклонение. Дисперсия - это среднее квадратов отклонений всех значений признака от их среднего значения. Стандартное отклонение - это квадратный корень из дисперсии.